Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Tissue Barriers ; 12(1): 2186672, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36899465

RESUMO

The injectable progestin depot-medroxyprogesterone acetate (DMPA) is a popular contraceptive choice in sub-Saharan Africa although mouse models indicate it weakens genital epithelial integrity and barrier function and increases susceptibility to genital infection. The intravaginal ring NuvaRing® is another contraceptive option that like DMPA suppresses hypothalamic pituitary ovarian (HPO) axis function with local release of progestin (etonogestrel) and estrogen (ethinyl estradiol). As we previously reported that treating mice with DMPA and estrogen averts the loss of genital epithelial integrity and barrier function induced by DMPA alone, in the current investigation we compared genital levels of the cell-cell adhesion molecule desmoglein-1 (DSG1) and genital epithelial permeability in rhesus macaques (RM) treated with DMPA or a NuvaRing®re-sized for RM (N-IVR). While these studies demonstrated comparable inhibition of the HPO axis with DMPA or N-IVR, DMPA induced significantly lower genital DSG1 levels and greater tissue permeability to intravaginally administered low molecular mass molecules. By identifying greater compromise of genital epithelial integrity and barrier function in RM administered DMPA vs. N-IVR, our results add to the growing body of evidence that indicate DMPA weakens a fundamental mechanism of anti-pathogen host defense in the female genital tract.


Assuntos
Anticoncepcionais Femininos , Desogestrel , Acetato de Medroxiprogesterona , Humanos , Feminino , Animais , Camundongos , Acetato de Medroxiprogesterona/efeitos adversos , Anticoncepcionais Femininos/efeitos adversos , Progestinas , Macaca mulatta , Etinilestradiol/farmacologia , Estrogênios/farmacologia , Genitália
3.
Nat Microbiol ; 8(5): 905-918, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024617

RESUMO

The human immunodeficiency virus epidemic continues in sub-Saharan Africa, and particularly affects adolescent girls and women who have limited access to antiretroviral therapy. Here we report that the risk of vaginal simian immunodeficiency virus (SIV)mac251 acquisition is reduced by more than 90% using a combination of a vaccine comprising V1-deleted (V2 enhanced) SIV envelope immunogens with topical treatment of the zinc-finger inhibitor SAMT-247. Following 14 weekly intravaginal exposures to the highly pathogenic SIVmac251, 80% of a cohort of 20 macaques vaccinated and treated with SAMT-247 remained uninfected. In an arm of 18 vaccinated-only animals without microbicide, 40% of macaques remained uninfected. The combined SAMT-247/vaccine regimen was significantly more effective than vaccination alone. By analysing immune correlates of protection, we show that, by increasing zinc availability, SAMT-247 increases natural killer cytotoxicity and monocyte efferocytosis, and decreases T-cell activation to augment vaccine-induced protection.


Assuntos
Anti-Infecciosos , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacinas , Animais , Humanos , Feminino , Adolescente , Macaca mulatta
4.
Sci Rep ; 13(1): 4594, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944714

RESUMO

Adolescent girls and young women in low- to middle-income countries are disproportionately at risk of becoming HIV-1 infected. New non-vaccine biomedical products aimed at overcoming this global health challenge need to provide a range of safe, effective, and discreet dosage forms based on the delivery of one or more antiviral compounds. An overarching strategy involves vaginal drug administration through inserts/tablets, gels, films, and intravaginal rings. The approach derives its appeal from being women-controlled and topical, there-by potentially minimizing systemic exposure to the agents and their metabolites. Oral regimens based on tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are established and effective in HIV-1 pre-exposure prophylaxis (PrEP), and form a promising basis for vaginal PrEP. Here, we used bone marrow/liver/thymus humanized mice to measure the in vivo efficacy against HIV-1 of single and combination antiviral compounds applied vaginally, coupled with data analysis using the Chou-Talalay mathematical model to study the dose-effect characteristics. Unexpectedly, strong antagonism was observed in drug combinations composed of TDF-FTC coupled with a third agent using a different mode of action against HIV-1. The antagonistic effect was remedied when TDF was omitted from the regimen. Our approach provides a translational template for the preclinical, rational, and systematic evaluation of drug combinations for the prevention of HIV-1, and other viral diseases.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Feminino , Camundongos , Animais , Masculino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Fármacos Anti-HIV/uso terapêutico , Tenofovir/uso terapêutico , Emtricitabina , Combinação de Medicamentos
5.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747683

RESUMO

The injectable progestin depot-medroxyprogesterone acetate (DMPA) is a popular contraceptive choice in sub-Saharan Africa although mouse models indicate it weakens genital epithelial integrity and barrier function and increases susceptibility to genital infection. The intravaginal ring NuvaRing® is another contraceptive option that like DMPA suppresses hypothalamic pituitary ovarian (HPO) axis function with local release of progestin (etonogestrel) and estrogen (ethinyl estradiol). As we previously reported that treating mice with DMPA and estrogen averts the loss of genital epithelial integrity and barrier function induced by DMPA alone, in the current investigation we compared genital levels of the cell-cell adhesion molecule desmoglein-1 (DSG1) and genital epithelial permeability in rhesus macaques (RM) treated with DMPA or a NuvaRing®re-sized for RM (N-IVR). While these studies demonstrated comparable inhibition of the HPO axis with DMPA or N-IVR, DMPA induced significantly lower genital DSG1 levels and greater tissue permeability to intravaginally administered low molecular mass molecules. By identifying greater compromise of genital epithelial integrity and barrier function in RM administered DMPA vs. N-IVR, our results add to the growing body of evidence that indicate DMPA weakens a fundamental mechanism of anti-pathogen host defense in the female genital tract.

6.
Pharm Res ; 40(7): 1657-1672, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36418671

RESUMO

PURPOSE: Long-acting formulations of the potent antiretroviral prodrug tenofovir alafenamide (TAF) hold potential as biomedical HIV prevention modalities. Here, we present a rigorous comparison of three animal models, C57BL/6 J mice, beagle dogs, and merino sheep for evaluating TAF implant pharmacokinetics (PKs). METHODS: Implants delivering TAF over a wide range of controlled release rates were tested in vitro and in mice and dogs. Our existing PK model, supported by an intravenous (IV) dosing dog study, was adapted to analyze mechanistic aspects underlying implant TAF delivery. RESULTS: TAF in vitro release in the 0.13 to 9.8 mg d-1 range with zero order kinetics were attained. Implants with equivalent fabrication parameters released TAF in mice and sheep at rates that were not statistically different, but were 3 times higher in dogs. When two implants were placed in the same subcutaneous pocket, a two-week creep to Cmax was observed in dogs for systemic drug and metabolite concentrations, but not in mice. Co-modeling IV and TAF implant PK data in dogs led to an apparent TAF bioavailability of 9.6 in the single implant groups (compared to the IV group), but only 1.5 when two implants were placed in the same subcutaneous pocket. CONCLUSIONS: Based on the current results, we recommend using mice and sheep, with macaques as a complementary species, for preclinical TAF implant evaluation with the caveat that our observations may be specific to the implant technology used here. Our report provides fundamental, translatable insights into multispecies TAF delivery via long-acting implants.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Animais , Camundongos , Cães , Ovinos , Tenofovir , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Profilaxia Pré-Exposição/métodos , Camundongos Endogâmicos C57BL , Adenina , Alanina
7.
Microbiol Spectr ; 10(6): e0446922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453916

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection kinetics in a real-world, clinical setting represent a knowledge gap in understanding the underlying coronavirus disease 2019 (COVID-19) pathogenesis. There are scant reports of the dynamics describing the two principal components of the viral life cycle, namely, the rapid proliferation and slower clearance phases. Here, we present results from an ongoing workplace clinical surveillance study during which two vaccinated participants became infected with SARS-CoV-2 Omicron variant (BA.1. lineage). The subjects were followed longitudinally with high temporal resolution, allowing the kinetics of both viral phases to be characterized. The viral doubling times in the proliferation phase (3.3 to 3.5 h) and maximum measured viral loads were similar to those observed for unvaccinated individuals infected with an earlier SARS-CoV-2 strain. However, the clearance phase was much shorter in the current study and unexpectedly displayed a multimodal profile. Longitudinal whole-genome SARS-CoV-2 sequencing identified a stable mutation that arose in one of the participants over the 2-week period of positivity. Our small study provides rare insight into the clinical SARS-CoV-2 dynamics, with significance for public health measures and the biology underlying COVID-19. IMPORTANCE We are conducting an ongoing SARS-CoV-2 workplace clinical study based on frequent, longitudinal disease surveillance of staff and household members. Here, we investigated the viral dynamics in two recently vaccinated participants who became infected with the same Omicron variant of SARS-CoV-2. Because the subjects were enrolled in our study, we were able to track the entire viral life cycle with high temporal resolution, with samples collected every 12 h. Surprisingly, the short viral proliferation phase and maximum viral loads in nasal swab samples were similar to our previous observations with unvaccinated participants and an earlier viral strain. However, the decay phase, indicative of viral clearance, was much shorter here. Our results provide a rare, real-world glimpse of the clinical SARS-CoV-2 replication kinetics, potentially impacting immediate therapies and awareness of earlier and greater transmission potential.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Cinética , Vacinação
8.
Clin Infect Dis ; 75(Suppl 4): S517-S524, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36410388

RESUMO

There are an estimated 257 million persons living with chronic hepatitis B for whom there are multiple potential applications of long-acting antiviral compounds. Current efforts include both injection and implant approaches to formulating derivates of existing anti-HBV compounds such as tenofovir or entecavir. Substantial progress has already occurred especially as aligned with the development of long-acting tenofovir-based medications with dual activity against human immunodeficiency virus (HIV) and hepatitis B virus (HBV). Nonetheless, substantial challenges will need to be overcome before these agents are available.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Hepatite B/tratamento farmacológico , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , Tenofovir/uso terapêutico , Antivirais/uso terapêutico
9.
Commun Med (Lond) ; 2: 129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238348

RESUMO

Background: A comprehensive understanding of the SARS-CoV-2 infection dynamics and the ensuing host immune responses is needed to explain the pathogenesis as it relates to viral transmission. Knowledge gaps exist surrounding SARS-CoV-2 in vivo kinetics, particularly in the earliest stages after exposure. Methods: An ongoing, workplace clinical surveillance study was used to intensely sample a small cohort longitudinally. Nine study participants who developed COVID-19 between November, 2020 and March, 2021 were monitored at high temporal resolution for three months in terms of viral loads as well as associated inflammatory biomarker and antibody responses. CD8 + T cells targeting SARS-CoV-2 in blood samples from study participants were evaluated. Results: Here we show that the resulting datasets, supported by Bayesian modeling, allowed the underlying kinetic processes to be described, yielding a number of unexpected findings. Early viral replication is rapid (median doubling time, 3.1 h), providing a narrow window between exposure and viral shedding, while the clearance phase is slow and heterogeneous. Host immune responses different widely across participants. Conclusions: Results from our small study give a rare insight into the life-cycle of COVID-19 infection and hold a number of important biological, clinical, and public health implications.

10.
Res Sq ; 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36172125

RESUMO

The SARS-CoV-2 infection kinetics in a real-world, clinical setting represent a knowledge gap in understanding the underlying COVID-19 pathogenesis. There are scant reports on the dynamics describing the two principal components of the viral life cycle, namely the rapid proliferation and slower clearance phases. Here, we present results from an ongoing workplace clinical surveillance study where two vaccinated participants became infected with SARS-CoV-2 Omicron variant (BA.1. lineage). The subjects were followed longitudinally at high temporal resolution allowing the kinetics of both viral phases to be characterized. The viral doubling times in the proliferation phase (3.3-3.5 h) and maximum measured viral loads were similar to those observed for unvaccinated individuals infected with an earlier SARS-CoV-2 strain. However, the clearance phase was much shorter in the current study and unexpectedly displayed a multimodal profile. Longitudinal whole genome SARS-CoV-2 sequencing identified a stable mutation that arose in one of the participants over the 2-week period of positivity. Our small study provides a rare insight into the clinical SARS-CoV-2 dynamics holding significance to public health measures and the biology underlying COVID-19.

11.
Sci Rep ; 12(1): 8224, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581262

RESUMO

Global efforts aimed at preventing human immunodeficiency virus type one (HIV-1) infection in vulnerable populations appear to be stalling, limiting our ability to control the epidemic. Long-acting, controlled drug administration from subdermal implants holds significant potential by reducing the compliance burden associated with frequent dosing. We, and others, are exploring the development of complementary subdermal implant technologies delivering the potent prodrug, tenofovir alafenamide (TAF). The current report addresses knowledge gaps in the preclinical pharmacology of long-acting, subdermal TAF delivery using several mouse models. Systemic drug disposition during TAF implant dosing was explained by a multi-compartment pharmacokinetic (PK) model. Imaging mass spectrometry was employed to characterize the spatial distribution of TAF and its principal five metabolites in local tissues surrounding the implant. Humanized mouse studies determined the effective TAF dose for preventing vaginal and rectal HIV-1 acquisition. Our results represent an important step in the development of a safe and effective TAF implant for HIV-1 prevention.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Adenina , Alanina/uso terapêutico , Animais , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Camundongos , Tenofovir/análogos & derivados , Tenofovir/uso terapêutico
12.
BMJ Open ; 12(1): e052880, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34992111

RESUMO

INTRODUCTION: Young African women bear a disproportionately high risk for HIV acquisition. HIV technologies that empower women to protect themselves are needed. Safe, potent antiretroviral agents such as tenofovir alafenamide (TAF), formulated as long-acting subdermal implants, offer an innovative solution. METHODS AND ANALYSIS: CAPRISA 018 is a phase I/II trial to evaluate the safety, acceptability, tolerability and pharmacokinetics (PKs) of a TAF free base subdermal silicone implant containing 110 mg of TAF with an anticipated 0.25 mg/day release rate.The phase I trial (n=60) will assess the safety of one implant inserted in six participants (Group 1), followed by dose escalation components (Groups 2 and 3) assessing the safety, tolerability and PK of one to four TAF 110 mg implants releasing between 0.25 mg and 1 mg daily in 54 healthy women at low risk for HIV infection. Data from this phase I trial will be used to determine the dosing, implant location and implant replacement interval for the phase II trial.The phase II component (Group 4) will assess extended safety, PK, tolerability and acceptability of the implant in 490 at risk women, randomised in a 1:1 ratio to the TAF implant and placebo tablet or to the placebo implant and an oral pre-exposure prophylaxis tablet. Safety will be assessed by calculating the percentage change in creatinine clearance from baseline at weeks 4, 12, 24, 36, 72, 96 and 120, compared with the percentage change in the control group. ETHICS AND DISSEMINATION: The South African Health Products Regulatory Authority and the University of KwaZulu-Natal's Biomedical Research Ethics Committee have approved the trial. Results will be disseminated through open access peer reviewed publications, conference presentations, public stakeholder engagement and upload of data into the clinical trials registry. TRIAL REGISTRATION NUMBER: PACTR201809520959443.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Alanina , Fármacos Anti-HIV/efeitos adversos , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Preparações de Ação Retardada/uso terapêutico , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Tenofovir/análogos & derivados , Tenofovir/uso terapêutico
13.
Expert Opin Drug Deliv ; 19(1): 47-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958283

RESUMO

INTRODUCTION: Adolescent girls and young women (AGYW), as well as pre- and post-menopausal women globally would benefit from expanded choice to address their sexual and reproductive health (SRH) needs related to Human Immunodeficiency Virus (HIV), sexually transmitted infections (STIs) and pregnancy prevention. Lack of adequate preventative vaccines for HIV/STIs reinforces public health prioritization for options women may use to mitigate risk for infectious disease and unplanned pregnancy. Drug releasing intravaginal rings (IVRs) represent one such technology that has garnered attention based on the modality's success as a pre-exposure prophylaxis (PrEP) delivery option in HIV risk reduction. AREAS COVERED: This article provides a synopsis of three IVR technologies in active clinical development for prevention of HIV, STI, and unintended pregnancy demonstrating advancements in terms of compatibility with a wide range of drug types with a focus on dapivirine-based silicone rings (International Partnership for Microbicides (IPM), tenofovir-based polyurethane rings (Conrad), and pod-based rings (Oak Crest Institute of Science)). EXPERT OPINION: The goals of IVR research are to reduce burdens of HIV/STIs and unplanned pregnancies. Through the evolution of IVR technologies, the potential exists to trigger integration of health-care services through formulation of products with multiple indications.


Assuntos
Dispositivos Anticoncepcionais Femininos , Infecções por HIV , Infecções Sexualmente Transmissíveis , Adolescente , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Preparações Farmacêuticas , Gravidez , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Infecções Sexualmente Transmissíveis/prevenção & controle , Tenofovir/uso terapêutico
14.
mSphere ; 6(4): e0054221, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232081

RESUMO

Public health practices and high vaccination rates currently represent the primary interventions for managing the spread of coronavirus disease 2019 (COVID-19). We initiated a clinical study based on frequent, longitudinal workplace disease surveillance to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission among employees and their household members. We hypothesized that the study would reduce the economic burden and loss of productivity of both individuals and small businesses resulting from standard isolation methods, while providing new insights into virus-host dynamics. Study participants (27 employees and 27 household members) consented to provide frequent nasal or oral swab samples that were analyzed by reverse transcription-quantitative PCR (RT-qPCR) for SARS-CoV-2 RNA. Two study participants were found to be infected by SARS-CoV-2 during the study. One subject, a household member, was SARS-CoV-2 RNA positive for at least 71 days and had quantifiable serum virus-specific antibody concentrations for over 1 year. One unrelated employee became positive for SARS-CoV-2 RNA over the course of the study but remained asymptomatic, with low associated viral RNA copy numbers, no detectable serum IgM and IgG concentrations, and IgA concentrations that decayed rapidly (half-life: 1.3 days). A COVID-19 infection model was used to predict that without surveillance intervention, up to 7 employees (95% confidence interval [CI] = 3 to 10) would have become infected, with at most 1 of them requiring hospitalization. Our scalable and transferable surveillance plan met its primary objectives and represents a powerful example of an innovative public health initiative dovetailed with scientific discovery. IMPORTANCE The rapid spread of SARS-CoV-2 and the associated COVID-19 has precipitated a global pandemic heavily challenging our social behavior, economy, and health care infrastructure. In the absence of widespread, worldwide access to safe and effective vaccines and therapeutics, public health measures represent a key intervention for curbing the devastating impacts from the pandemic. We are conducting an ongoing clinical study based on frequent, longitudinal workplace disease surveillance to control SARS-CoV-2 transmission among employees and their household members. Our study was successful in surveying the viral and immune response dynamics in two participants with unusual infections: one remained positive for SARS-CoV-2 for 71 days, while the other was asymptomatic, with low associated viral RNA copy numbers. A COVID-19 infection model was used to predict that without surveillance intervention, up to 7 employees would have become infected, with at most 1 of them requiring hospitalization, underscoring the importance of our program.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Saúde Pública , RNA Viral/imunologia , Local de Trabalho , Adulto Jovem
15.
PLoS One ; 16(5): e0251934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014993

RESUMO

We and others previously reported that the direct-acting agents (DAA) NS5A inhibitors (NS5Ai) and the host-targeting agents cyclophilin inhibitors (CypIs) inhibit HCV replication in vitro. In this study, we investigated whether the combination of NS5Ai and CypI offers a potent anti-HCV effect in vivo. A single administration of NS5Ai or CypI alone to HCV-infected humanized-mice inhibits HCV replication. The combination of NS5Ai with CypI suppresses HCV (GT1a, GT2a, GT3a and GT4a) replication in an additive manner. NS5Ai/CypI combinations provide a statistically more profound anti-HCV inhibition for GT2a and GT3a than GT1a and GT4a, leading to a fastest and deepest inhibition of GT2a and GT3a replications. Combining CypI with NS5Ai prevents the viral rebound normally observed in mice treated with NS5Ai alone. Results were confirmed in mice implanted with human hepatocytes from different donors. Therefore, the combination of NS5Ai with CypI may serve as a regimen for the treatment of HCV patients with specific genotypes and disorder conditions, which diminish sustain viral response levels to DAA, such as GT3a infection, cirrhosis, and DAA resistance associated with the selection of resistance-associated substitutions present at baseline or are acquired during treatment.


Assuntos
Antivirais/farmacologia , Ciclofilinas/genética , Hepacivirus/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Ciclofilinas/antagonistas & inibidores , Farmacorresistência Viral/genética , Genótipo , Hepacivirus/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/virologia , Camundongos , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
16.
AIDS Res Hum Retroviruses ; 37(6): 409-420, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33913760

RESUMO

The ability to successfully develop a safe and effective vaccine for the prevention of HIV infection has proven challenging. Consequently, alternative approaches to HIV infection prevention have been pursued, and there have been a number of successes with differing levels of efficacy. At present, only two oral preexposure prophylaxis (PrEP) products are available, Truvada and Descovy. Descovy is a newer product not yet indicated in individuals at risk of HIV-1 infection from receptive vaginal sex, because it still needs to be evaluated in this population. A topical dapivirine vaginal ring is currently under regulatory review, and a long-acting (LA) injectable cabotegravir product shows strong promise. Although demonstrably effective, daily oral PrEP presents adherence challenges for many users, particularly adolescent girls and young women, key target populations. This limitation has triggered development efforts in LA HIV prevention options. This article reviews efforts supported by the Bill & Melinda Gates Foundation, as well as similar work by other groups, to identify and develop optimal LA HIV prevention products. Specifically, this article is a summary review of a meeting convened by the foundation in early 2020 that focused on the development of LA products designed for extended delivery of tenofovir alafenamide (TAF) for HIV prevention. The review broadly serves as technical guidance for preclinical development of LA HIV prevention products. The meeting examined the technical feasibility of multiple delivery technologies, in vivo pharmacokinetics, and safety of subcutaneous (SC) delivery of TAF in animal models. Ultimately, the foundation concluded that there are technologies available for long-term delivery of TAF. However, because of potentially limited efficacy and possible toxicity issues with SC delivery, the foundation will not continue investing in the development of LA, SC delivery of TAF products for HIV prevention.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Adenina/uso terapêutico , Adolescente , Alanina , Animais , Fármacos Anti-HIV/uso terapêutico , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Tenofovir/análogos & derivados
17.
ACS Omega ; 5(33): 20882-20889, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32875223

RESUMO

Transporters are specialized integral membrane proteins, which mediate the passage of virtually all molecules through cell membranes. They are expressed in a broad range of human and animal tissues and play important roles in both normal and disease states. For these reasons, they are evaluated when developing and testing drugs. Two major families of drug transporters, the adenosine 5'-triphosphate-binding cassette and solute carrier transporters (SLC), have critical roles in the absorption, distribution, metabolism, and elimination of drugs. The SLC family contains known nucleoside transporters and therefore are important when nucleoside analogs are used as drugs to prevent or treat viral infections. In this study, we wanted to determine if it was possible to locate one member of the SLC family, the human concentrative nucleoside transporter 3 (CNT3) in human vaginal epithelial cells. The CNT3 protein has important roles in drug delivery, subsequent drug tissue distribution, and, hence, efficacy. Vaginal epithelial cells, taken from two human volunteers (one Caucasian and one African American), were labeled for light and electron microscopy, with a commercial antibody to a cytoplasmic domain of CNT3, the protein product of the SLC28A3 gene. Fluorescent secondary antibodies or protein A-gold were used to detect antibody binding. By electron microscopy, gold particle binding was quantified to determine labeling specificity. By light microscopy, positive labeling with anti-CNT3 antibodies was detected on human vaginal epithelial cells, but specificity to any intracellular structure was not easily determined, most likely a result of specimen preparation. Electron microscopy revealed that the CNT3 transporter protein was present predominantly on microvilli located on one side of some human vaginal epithelial cells. Quantification confirmed specific anti-CNT3 labeling over human vaginal epithelial cell microvilli. The CNT3 protein, present in the microvilli of human vaginal epithelial cells, may have a role in redistributing nucleoside homologues delivered to the vaginal tract. Transporter proteins such as CNT3 could shuttle nucleosides and their analogs through the vaginal epithelium to immune cells located in lower cell layers. Outer layers of cells, which are eventually shed from the epithelium, may remove accumulated nucleoside drug analogs from the vaginal tract.

18.
Sci Rep ; 10(1): 12995, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747682

RESUMO

The HIV-1 epidemic remains an urgent global health concern. Young women are disproportionately at risk of acquiring the virus. A range of highly effective, female-controlled, discrete vaginal products therefore is needed to help curb the epidemic. Oral tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are effective in HIV-1 pre-exposure prophylaxis (PrEP) and form a promising basis for a vaginal product. Here, we evaluate TDF and FTC in combination with the broadly neutralizing antibody VRC01-N using a highly reproducible humanized mouse model. The agents were vaginally dosed individually and in combination, and the efficacy of HIV-1 prevention was analyzed using the established, rigorous median-effect model. Surprisingly, the triple combination showed a high degree of synergism, unprecedented for in vivo HIV-1 PrEP, leading to a possible fivefold dose reduction for some of the agents. Vaginal administration of the TDF-FTC-VRC01-N combination holds significant promise for HIV-1 PrEP.


Assuntos
Antivirais/administração & dosagem , Emtricitabina/administração & dosagem , Infecções por HIV/prevenção & controle , Tenofovir/administração & dosagem , Vagina , Administração Intravaginal , Animais , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos
19.
Front Pharmacol ; 11: 569373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536904

RESUMO

New HIV-1 infection rates far outpace the targets set by global health organizations, despite important progress in curbing the progression of the epidemic. Long-acting (LA) formulations delivering antiretroviral (ARV) agents for HIV-1 pre-exposure prophylaxis (PrEP) hold significant promise, potentially facilitating adherence due to reduced dosing frequency compared to oral regimens. We have developed a subdermal implant delivering the potent ARV drug tenofovir alafenamide that could provide protection from HIV-1 infection for 6 months, or longer. Implants from the same lot were investigated in mice and sheep for local safety and pharmacokinetics (PKs). Ours is the first report using these animal models to evaluate subdermal implants for HIV-1 PrEP. The devices appeared safe, and the plasma PKs as well as the drug and metabolite concentrations in dermal tissue adjacent to the implants were studied and contrasted in two models spanning the extremes of the body weight spectrum. Drug and drug metabolite concentrations in dermal tissue are key in assessing local exposure and any toxicity related to the active agent. Based on our analysis, both animal models were shown to hold significant promise in LA product development.

20.
Proc Natl Acad Sci U S A ; 116(11): 4828-4833, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804197

RESUMO

Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe2+-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1:1 Fe(II):Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of Eh, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...